Solve for a
a=-\frac{66b}{67}-\frac{258c}{335}-\frac{312e}{335}+\frac{64}{67}
Solve for b
b=-\frac{43c}{55}-\frac{67a}{66}-\frac{52e}{55}+\frac{32}{33}
Share
Copied to clipboard
3350a+3300b+2580c+0+3120e=3200
Anything times zero gives zero.
3350a+3300b+2580c+3120e=3200
Anything plus zero gives itself.
3350a+2580c+3120e=3200-3300b
Subtract 3300b from both sides.
3350a+3120e=3200-3300b-2580c
Subtract 2580c from both sides.
3350a=3200-3300b-2580c-3120e
Subtract 3120e from both sides.
3350a=-3300b-2580c+3200-3120e
The equation is in standard form.
\frac{3350a}{3350}=\frac{-3300b-2580c+3200-3120e}{3350}
Divide both sides by 3350.
a=\frac{-3300b-2580c+3200-3120e}{3350}
Dividing by 3350 undoes the multiplication by 3350.
a=-\frac{66b}{67}-\frac{258c}{335}-\frac{312e}{335}+\frac{64}{67}
Divide 3200-3300b-2580c-3120e by 3350.
3350a+3300b+2580c+0+3120e=3200
Anything times zero gives zero.
3350a+3300b+2580c+3120e=3200
Anything plus zero gives itself.
3300b+2580c+3120e=3200-3350a
Subtract 3350a from both sides.
3300b+3120e=3200-3350a-2580c
Subtract 2580c from both sides.
3300b=3200-3350a-2580c-3120e
Subtract 3120e from both sides.
3300b=-3350a-2580c+3200-3120e
The equation is in standard form.
\frac{3300b}{3300}=\frac{-3350a-2580c+3200-3120e}{3300}
Divide both sides by 3300.
b=\frac{-3350a-2580c+3200-3120e}{3300}
Dividing by 3300 undoes the multiplication by 3300.
b=-\frac{43c}{55}-\frac{67a}{66}-\frac{52e}{55}+\frac{32}{33}
Divide 3200-3350a-2580c-3120e by 3300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}