Evaluate
\frac{333}{13}\approx 25.615384615
Factor
\frac{3 ^ {2} \cdot 37}{13} = 25\frac{8}{13} = 25.615384615384617
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)333}\\\end{array}
Use the 1^{st} digit 3 from dividend 333
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)333}\\\end{array}
Since 3 is less than 13, use the next digit 3 from dividend 333 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)333}\\\end{array}
Use the 2^{nd} digit 3 from dividend 333
\begin{array}{l}\phantom{13)}02\phantom{4}\\13\overline{)333}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)9}7\\\end{array}
Find closest multiple of 13 to 33. We see that 2 \times 13 = 26 is the nearest. Now subtract 26 from 33 to get reminder 7. Add 2 to quotient.
\begin{array}{l}\phantom{13)}02\phantom{5}\\13\overline{)333}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)9}73\\\end{array}
Use the 3^{rd} digit 3 from dividend 333
\begin{array}{l}\phantom{13)}025\phantom{6}\\13\overline{)333}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)9}73\\\phantom{13)}\underline{\phantom{9}65\phantom{}}\\\phantom{13)99}8\\\end{array}
Find closest multiple of 13 to 73. We see that 5 \times 13 = 65 is the nearest. Now subtract 65 from 73 to get reminder 8. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }8
Since 8 is less than 13, stop the division. The reminder is 8. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}