Evaluate
\frac{332}{35}\approx 9.485714286
Factor
\frac{2 ^ {2} \cdot 83}{5 \cdot 7} = 9\frac{17}{35} = 9.485714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)332}\\\end{array}
Use the 1^{st} digit 3 from dividend 332
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)332}\\\end{array}
Since 3 is less than 35, use the next digit 3 from dividend 332 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)332}\\\end{array}
Use the 2^{nd} digit 3 from dividend 332
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)332}\\\end{array}
Since 33 is less than 35, use the next digit 2 from dividend 332 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)332}\\\end{array}
Use the 3^{rd} digit 2 from dividend 332
\begin{array}{l}\phantom{35)}009\phantom{6}\\35\overline{)332}\\\phantom{35)}\underline{\phantom{}315\phantom{}}\\\phantom{35)9}17\\\end{array}
Find closest multiple of 35 to 332. We see that 9 \times 35 = 315 is the nearest. Now subtract 315 from 332 to get reminder 17. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }17
Since 17 is less than 35, stop the division. The reminder is 17. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}