Evaluate
33
Factor
3\times 11
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)330}\\\end{array}
Use the 1^{st} digit 3 from dividend 330
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)330}\\\end{array}
Since 3 is less than 10, use the next digit 3 from dividend 330 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)330}\\\end{array}
Use the 2^{nd} digit 3 from dividend 330
\begin{array}{l}\phantom{10)}03\phantom{4}\\10\overline{)330}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}3\\\end{array}
Find closest multiple of 10 to 33. We see that 3 \times 10 = 30 is the nearest. Now subtract 30 from 33 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{10)}03\phantom{5}\\10\overline{)330}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}30\\\end{array}
Use the 3^{rd} digit 0 from dividend 330
\begin{array}{l}\phantom{10)}033\phantom{6}\\10\overline{)330}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}30\\\phantom{10)}\underline{\phantom{9}30\phantom{}}\\\phantom{10)999}0\\\end{array}
Find closest multiple of 10 to 30. We see that 3 \times 10 = 30 is the nearest. Now subtract 30 from 30 to get reminder 0. Add 3 to quotient.
\text{Quotient: }33 \text{Reminder: }0
Since 0 is less than 10, stop the division. The reminder is 0. The topmost line 033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}