Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+32x-60=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=32 ab=-\left(-60\right)=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-60. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=30 b=2
The solution is the pair that gives sum 32.
\left(-x^{2}+30x\right)+\left(2x-60\right)
Rewrite -x^{2}+32x-60 as \left(-x^{2}+30x\right)+\left(2x-60\right).
-x\left(x-30\right)+2\left(x-30\right)
Factor out -x in the first and 2 in the second group.
\left(x-30\right)\left(-x+2\right)
Factor out common term x-30 by using distributive property.
x=30 x=2
To find equation solutions, solve x-30=0 and -x+2=0.
-x^{2}+32x-60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 32 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
Square 32.
x=\frac{-32±\sqrt{1024+4\left(-60\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-32±\sqrt{1024-240}}{2\left(-1\right)}
Multiply 4 times -60.
x=\frac{-32±\sqrt{784}}{2\left(-1\right)}
Add 1024 to -240.
x=\frac{-32±28}{2\left(-1\right)}
Take the square root of 784.
x=\frac{-32±28}{-2}
Multiply 2 times -1.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-32±28}{-2} when ± is plus. Add -32 to 28.
x=2
Divide -4 by -2.
x=-\frac{60}{-2}
Now solve the equation x=\frac{-32±28}{-2} when ± is minus. Subtract 28 from -32.
x=30
Divide -60 by -2.
x=2 x=30
The equation is now solved.
-x^{2}+32x-60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+32x-60-\left(-60\right)=-\left(-60\right)
Add 60 to both sides of the equation.
-x^{2}+32x=-\left(-60\right)
Subtracting -60 from itself leaves 0.
-x^{2}+32x=60
Subtract -60 from 0.
\frac{-x^{2}+32x}{-1}=\frac{60}{-1}
Divide both sides by -1.
x^{2}+\frac{32}{-1}x=\frac{60}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-32x=\frac{60}{-1}
Divide 32 by -1.
x^{2}-32x=-60
Divide 60 by -1.
x^{2}-32x+\left(-16\right)^{2}=-60+\left(-16\right)^{2}
Divide -32, the coefficient of the x term, by 2 to get -16. Then add the square of -16 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-32x+256=-60+256
Square -16.
x^{2}-32x+256=196
Add -60 to 256.
\left(x-16\right)^{2}=196
Factor x^{2}-32x+256. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-16\right)^{2}}=\sqrt{196}
Take the square root of both sides of the equation.
x-16=14 x-16=-14
Simplify.
x=30 x=2
Add 16 to both sides of the equation.