Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)328}\\\end{array}
Use the 1^{st} digit 3 from dividend 328
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)328}\\\end{array}
Since 3 is less than 41, use the next digit 2 from dividend 328 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)328}\\\end{array}
Use the 2^{nd} digit 2 from dividend 328
\begin{array}{l}\phantom{41)}00\phantom{4}\\41\overline{)328}\\\end{array}
Since 32 is less than 41, use the next digit 8 from dividend 328 and add 0 to the quotient
\begin{array}{l}\phantom{41)}00\phantom{5}\\41\overline{)328}\\\end{array}
Use the 3^{rd} digit 8 from dividend 328
\begin{array}{l}\phantom{41)}008\phantom{6}\\41\overline{)328}\\\phantom{41)}\underline{\phantom{}328\phantom{}}\\\phantom{41)999}0\\\end{array}
Find closest multiple of 41 to 328. We see that 8 \times 41 = 328 is the nearest. Now subtract 328 from 328 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 41, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}