Evaluate
\frac{327}{28}\approx 11.678571429
Factor
\frac{3 \cdot 109}{2 ^ {2} \cdot 7} = 11\frac{19}{28} = 11.678571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)327}\\\end{array}
Use the 1^{st} digit 3 from dividend 327
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)327}\\\end{array}
Since 3 is less than 28, use the next digit 2 from dividend 327 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)327}\\\end{array}
Use the 2^{nd} digit 2 from dividend 327
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)327}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)9}4\\\end{array}
Find closest multiple of 28 to 32. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 32 to get reminder 4. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)327}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)9}47\\\end{array}
Use the 3^{rd} digit 7 from dividend 327
\begin{array}{l}\phantom{28)}011\phantom{6}\\28\overline{)327}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)9}47\\\phantom{28)}\underline{\phantom{9}28\phantom{}}\\\phantom{28)9}19\\\end{array}
Find closest multiple of 28 to 47. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 47 to get reminder 19. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }19
Since 19 is less than 28, stop the division. The reminder is 19. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}