325 = \frac { n [ 8 b + ( n - 1 ) \times ( - 3 ) } { 2 }
Solve for b
b=\frac{3n}{8}-\frac{3}{8}+\frac{325}{4n}
n\neq 0
Solve for n
n=-\frac{\sqrt{64b^{2}+48b-7791}}{6}+\frac{4b}{3}+\frac{1}{2}
n=\frac{\sqrt{64b^{2}+48b-7791}}{6}+\frac{4b}{3}+\frac{1}{2}\text{, }b\geq \frac{5\sqrt{78}}{4}-\frac{3}{8}\text{ or }b\leq -\frac{5\sqrt{78}}{4}-\frac{3}{8}
Share
Copied to clipboard
325\times 2=n\left(8b+\left(n-1\right)\times \left(-3\right)\right)
Multiply both sides by 2.
650=n\left(8b+\left(n-1\right)\times \left(-3\right)\right)
Multiply 325 and 2 to get 650.
650=8nb+n\left(\left(n-1\right)\times \left(-3\right)\right)
Use the distributive property to multiply n by 8b+\left(n-1\right)\times \left(-3\right).
8nb+n\left(\left(n-1\right)\times \left(-3\right)\right)=650
Swap sides so that all variable terms are on the left hand side.
8nb=650-n\left(\left(n-1\right)\times \left(-3\right)\right)
Subtract n\left(\left(n-1\right)\times \left(-3\right)\right) from both sides.
8bn=-n\left(\left(n-1\right)\times \left(-3\right)\right)+650
Reorder the terms.
8nb=3n\left(n-1\right)+650
The equation is in standard form.
\frac{8nb}{8n}=\frac{3n\left(n-1\right)+650}{8n}
Divide both sides by 8n.
b=\frac{3n\left(n-1\right)+650}{8n}
Dividing by 8n undoes the multiplication by 8n.
b=\frac{3n}{8}-\frac{3}{8}+\frac{325}{4n}
Divide 3\left(n-1\right)n+650 by 8n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}