Evaluate
\frac{323}{72}\approx 4.486111111
Factor
\frac{17 \cdot 19}{2 ^ {3} \cdot 3 ^ {2}} = 4\frac{35}{72} = 4.486111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)323}\\\end{array}
Use the 1^{st} digit 3 from dividend 323
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)323}\\\end{array}
Since 3 is less than 72, use the next digit 2 from dividend 323 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)323}\\\end{array}
Use the 2^{nd} digit 2 from dividend 323
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)323}\\\end{array}
Since 32 is less than 72, use the next digit 3 from dividend 323 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)323}\\\end{array}
Use the 3^{rd} digit 3 from dividend 323
\begin{array}{l}\phantom{72)}004\phantom{6}\\72\overline{)323}\\\phantom{72)}\underline{\phantom{}288\phantom{}}\\\phantom{72)9}35\\\end{array}
Find closest multiple of 72 to 323. We see that 4 \times 72 = 288 is the nearest. Now subtract 288 from 323 to get reminder 35. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }35
Since 35 is less than 72, stop the division. The reminder is 35. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}