Evaluate
\frac{641}{200}=3.205
Factor
\frac{641}{2 ^ {3} \cdot 5 ^ {2}} = 3\frac{41}{200} = 3.205
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)3205}\\\end{array}
Use the 1^{st} digit 3 from dividend 3205
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)3205}\\\end{array}
Since 3 is less than 1000, use the next digit 2 from dividend 3205 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)3205}\\\end{array}
Use the 2^{nd} digit 2 from dividend 3205
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)3205}\\\end{array}
Since 32 is less than 1000, use the next digit 0 from dividend 3205 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)3205}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3205
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)3205}\\\end{array}
Since 320 is less than 1000, use the next digit 5 from dividend 3205 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)3205}\\\end{array}
Use the 4^{th} digit 5 from dividend 3205
\begin{array}{l}\phantom{1000)}0003\phantom{8}\\1000\overline{)3205}\\\phantom{1000)}\underline{\phantom{}3000\phantom{}}\\\phantom{1000)9}205\\\end{array}
Find closest multiple of 1000 to 3205. We see that 3 \times 1000 = 3000 is the nearest. Now subtract 3000 from 3205 to get reminder 205. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }205
Since 205 is less than 1000, stop the division. The reminder is 205. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}