Evaluate
\frac{32}{5}=6.4
Factor
\frac{2 ^ {5}}{5} = 6\frac{2}{5} = 6.4
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)3200}\\\end{array}
Use the 1^{st} digit 3 from dividend 3200
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)3200}\\\end{array}
Since 3 is less than 500, use the next digit 2 from dividend 3200 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)3200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 3200
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)3200}\\\end{array}
Since 32 is less than 500, use the next digit 0 from dividend 3200 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)3200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3200
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)3200}\\\end{array}
Since 320 is less than 500, use the next digit 0 from dividend 3200 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)3200}\\\end{array}
Use the 4^{th} digit 0 from dividend 3200
\begin{array}{l}\phantom{500)}0006\phantom{8}\\500\overline{)3200}\\\phantom{500)}\underline{\phantom{}3000\phantom{}}\\\phantom{500)9}200\\\end{array}
Find closest multiple of 500 to 3200. We see that 6 \times 500 = 3000 is the nearest. Now subtract 3000 from 3200 to get reminder 200. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }200
Since 200 is less than 500, stop the division. The reminder is 200. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}