Evaluate
\frac{80}{9}\approx 8.888888889
Factor
\frac{2 ^ {4} \cdot 5}{3 ^ {2}} = 8\frac{8}{9} = 8.88888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)320}\\\end{array}
Use the 1^{st} digit 3 from dividend 320
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)320}\\\end{array}
Since 3 is less than 36, use the next digit 2 from dividend 320 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)320}\\\end{array}
Use the 2^{nd} digit 2 from dividend 320
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)320}\\\end{array}
Since 32 is less than 36, use the next digit 0 from dividend 320 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)320}\\\end{array}
Use the 3^{rd} digit 0 from dividend 320
\begin{array}{l}\phantom{36)}008\phantom{6}\\36\overline{)320}\\\phantom{36)}\underline{\phantom{}288\phantom{}}\\\phantom{36)9}32\\\end{array}
Find closest multiple of 36 to 320. We see that 8 \times 36 = 288 is the nearest. Now subtract 288 from 320 to get reminder 32. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }32
Since 32 is less than 36, stop the division. The reminder is 32. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}