Solve for x
x\in (-\infty,-\frac{\sqrt{2}}{8}]\cup [\frac{\sqrt{2}}{8},\infty)
Graph
Share
Copied to clipboard
x^{2}\geq \frac{1}{32}
Divide both sides by 32. Since 32 is positive, the inequality direction remains the same.
x^{2}\geq \left(\frac{\sqrt{2}}{8}\right)^{2}
Calculate the square root of \frac{1}{32} and get \frac{\sqrt{2}}{8}. Rewrite \frac{1}{32} as \left(\frac{\sqrt{2}}{8}\right)^{2}.
|x|\geq \frac{\sqrt{2}}{8}
Inequality holds for |x|\geq \frac{\sqrt{2}}{8}.
x\leq -\frac{\sqrt{2}}{8}\text{; }x\geq \frac{\sqrt{2}}{8}
Rewrite |x|\geq \frac{\sqrt{2}}{8} as x\leq -\frac{\sqrt{2}}{8}\text{; }x\geq \frac{\sqrt{2}}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}