Factor
\left(4x+7\right)\left(8x+7\right)
Evaluate
\left(4x+7\right)\left(8x+7\right)
Graph
Share
Copied to clipboard
32x^{2}+84x+49
Multiply and combine like terms.
a+b=84 ab=32\times 49=1568
Factor the expression by grouping. First, the expression needs to be rewritten as 32x^{2}+ax+bx+49. To find a and b, set up a system to be solved.
1,1568 2,784 4,392 7,224 8,196 14,112 16,98 28,56 32,49
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 1568.
1+1568=1569 2+784=786 4+392=396 7+224=231 8+196=204 14+112=126 16+98=114 28+56=84 32+49=81
Calculate the sum for each pair.
a=28 b=56
The solution is the pair that gives sum 84.
\left(32x^{2}+28x\right)+\left(56x+49\right)
Rewrite 32x^{2}+84x+49 as \left(32x^{2}+28x\right)+\left(56x+49\right).
4x\left(8x+7\right)+7\left(8x+7\right)
Factor out 4x in the first and 7 in the second group.
\left(8x+7\right)\left(4x+7\right)
Factor out common term 8x+7 by using distributive property.
32x^{2}+84x+49
Combine 28x and 56x to get 84x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}