Factor
4\left(2x+1\right)\left(4x+1\right)
Evaluate
32x^{2}+24x+4
Graph
Share
Copied to clipboard
4\left(8x^{2}+6x+1\right)
Factor out 4.
a+b=6 ab=8\times 1=8
Consider 8x^{2}+6x+1. Factor the expression by grouping. First, the expression needs to be rewritten as 8x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=2 b=4
The solution is the pair that gives sum 6.
\left(8x^{2}+2x\right)+\left(4x+1\right)
Rewrite 8x^{2}+6x+1 as \left(8x^{2}+2x\right)+\left(4x+1\right).
2x\left(4x+1\right)+4x+1
Factor out 2x in 8x^{2}+2x.
\left(4x+1\right)\left(2x+1\right)
Factor out common term 4x+1 by using distributive property.
4\left(4x+1\right)\left(2x+1\right)
Rewrite the complete factored expression.
32x^{2}+24x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-24±\sqrt{24^{2}-4\times 32\times 4}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{576-4\times 32\times 4}}{2\times 32}
Square 24.
x=\frac{-24±\sqrt{576-128\times 4}}{2\times 32}
Multiply -4 times 32.
x=\frac{-24±\sqrt{576-512}}{2\times 32}
Multiply -128 times 4.
x=\frac{-24±\sqrt{64}}{2\times 32}
Add 576 to -512.
x=\frac{-24±8}{2\times 32}
Take the square root of 64.
x=\frac{-24±8}{64}
Multiply 2 times 32.
x=-\frac{16}{64}
Now solve the equation x=\frac{-24±8}{64} when ± is plus. Add -24 to 8.
x=-\frac{1}{4}
Reduce the fraction \frac{-16}{64} to lowest terms by extracting and canceling out 16.
x=-\frac{32}{64}
Now solve the equation x=\frac{-24±8}{64} when ± is minus. Subtract 8 from -24.
x=-\frac{1}{2}
Reduce the fraction \frac{-32}{64} to lowest terms by extracting and canceling out 32.
32x^{2}+24x+4=32\left(x-\left(-\frac{1}{4}\right)\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{4} for x_{1} and -\frac{1}{2} for x_{2}.
32x^{2}+24x+4=32\left(x+\frac{1}{4}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
32x^{2}+24x+4=32\times \frac{4x+1}{4}\left(x+\frac{1}{2}\right)
Add \frac{1}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
32x^{2}+24x+4=32\times \frac{4x+1}{4}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
32x^{2}+24x+4=32\times \frac{\left(4x+1\right)\left(2x+1\right)}{4\times 2}
Multiply \frac{4x+1}{4} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
32x^{2}+24x+4=32\times \frac{\left(4x+1\right)\left(2x+1\right)}{8}
Multiply 4 times 2.
32x^{2}+24x+4=4\left(4x+1\right)\left(2x+1\right)
Cancel out 8, the greatest common factor in 32 and 8.
x ^ 2 +\frac{3}{4}x +\frac{1}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 32
r + s = -\frac{3}{4} rs = \frac{1}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{8} - u s = -\frac{3}{8} + u
Two numbers r and s sum up to -\frac{3}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{3}{4} = -\frac{3}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{8} - u) (-\frac{3}{8} + u) = \frac{1}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{8}
\frac{9}{64} - u^2 = \frac{1}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{8}-\frac{9}{64} = -\frac{1}{64}
Simplify the expression by subtracting \frac{9}{64} on both sides
u^2 = \frac{1}{64} u = \pm\sqrt{\frac{1}{64}} = \pm \frac{1}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{8} - \frac{1}{8} = -0.500 s = -\frac{3}{8} + \frac{1}{8} = -0.250
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}