Solve for t
t=2
t=0
Share
Copied to clipboard
t\left(32-16t\right)=0
Factor out t.
t=0 t=2
To find equation solutions, solve t=0 and 32-16t=0.
-16t^{2}+32t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-32±\sqrt{32^{2}}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 32 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-32±32}{2\left(-16\right)}
Take the square root of 32^{2}.
t=\frac{-32±32}{-32}
Multiply 2 times -16.
t=\frac{0}{-32}
Now solve the equation t=\frac{-32±32}{-32} when ± is plus. Add -32 to 32.
t=0
Divide 0 by -32.
t=-\frac{64}{-32}
Now solve the equation t=\frac{-32±32}{-32} when ± is minus. Subtract 32 from -32.
t=2
Divide -64 by -32.
t=0 t=2
The equation is now solved.
-16t^{2}+32t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16t^{2}+32t}{-16}=\frac{0}{-16}
Divide both sides by -16.
t^{2}+\frac{32}{-16}t=\frac{0}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-2t=\frac{0}{-16}
Divide 32 by -16.
t^{2}-2t=0
Divide 0 by -16.
t^{2}-2t+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(t-1\right)^{2}=1
Factor t^{2}-2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
t-1=1 t-1=-1
Simplify.
t=2 t=0
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}