32 \% x + 16 \% = 1.44 - 12 \% x
Solve for x
x = \frac{32}{11} = 2\frac{10}{11} \approx 2.909090909
Graph
Share
Copied to clipboard
\frac{8}{25}x+\frac{16}{100}=1.44-\frac{12}{100}x
Reduce the fraction \frac{32}{100} to lowest terms by extracting and canceling out 4.
\frac{8}{25}x+\frac{4}{25}=1.44-\frac{12}{100}x
Reduce the fraction \frac{16}{100} to lowest terms by extracting and canceling out 4.
\frac{8}{25}x+\frac{4}{25}=1.44-\frac{3}{25}x
Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
\frac{8}{25}x+\frac{4}{25}+\frac{3}{25}x=1.44
Add \frac{3}{25}x to both sides.
\frac{11}{25}x+\frac{4}{25}=1.44
Combine \frac{8}{25}x and \frac{3}{25}x to get \frac{11}{25}x.
\frac{11}{25}x=1.44-\frac{4}{25}
Subtract \frac{4}{25} from both sides.
\frac{11}{25}x=\frac{36}{25}-\frac{4}{25}
Convert decimal number 1.44 to fraction \frac{144}{100}. Reduce the fraction \frac{144}{100} to lowest terms by extracting and canceling out 4.
\frac{11}{25}x=\frac{36-4}{25}
Since \frac{36}{25} and \frac{4}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{25}x=\frac{32}{25}
Subtract 4 from 36 to get 32.
x=\frac{32}{25}\times \frac{25}{11}
Multiply both sides by \frac{25}{11}, the reciprocal of \frac{11}{25}.
x=\frac{32\times 25}{25\times 11}
Multiply \frac{32}{25} times \frac{25}{11} by multiplying numerator times numerator and denominator times denominator.
x=\frac{32}{11}
Cancel out 25 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}