Solve for x
x=\log_{0.996}\left(\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000}\right)\approx 143.495089004
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(0.996)}+\log_{0.996}\left(\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000}\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
3140\times 0.996+2710\left(1-0.004\right)^{18}=10040\left(1-0.004\right)^{x}
Subtract 0.004 from 1 to get 0.996.
3127.44+2710\left(1-0.004\right)^{18}=10040\left(1-0.004\right)^{x}
Multiply 3140 and 0.996 to get 3127.44.
3127.44+2710\times 0.996^{18}=10040\left(1-0.004\right)^{x}
Subtract 0.004 from 1 to get 0.996.
3127.44+2710\times 0.930396550661887594608597139955573614226852443362164736=10040\left(1-0.004\right)^{x}
Calculate 0.996 to the power of 18 and get 0.930396550661887594608597139955573614226852443362164736.
3127.44+2521.37465229371538138929824927960449455477012151146643456=10040\left(1-0.004\right)^{x}
Multiply 2710 and 0.930396550661887594608597139955573614226852443362164736 to get 2521.37465229371538138929824927960449455477012151146643456.
5648.81465229371538138929824927960449455477012151146643456=10040\left(1-0.004\right)^{x}
Add 3127.44 and 2521.37465229371538138929824927960449455477012151146643456 to get 5648.81465229371538138929824927960449455477012151146643456.
5648.81465229371538138929824927960449455477012151146643456=10040\times 0.996^{x}
Subtract 0.004 from 1 to get 0.996.
10040\times 0.996^{x}=5648.81465229371538138929824927960449455477012151146643456
Swap sides so that all variable terms are on the left hand side.
0.996^{x}=\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000}
Divide both sides by 10040.
\log(0.996^{x})=\log(\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000})
Take the logarithm of both sides of the equation.
x\log(0.996)=\log(\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000})}{\log(0.996)}
Divide both sides by \log(0.996).
x=\log_{0.996}\left(\frac{8220107196093471984770874040666392094215218271}{14610122889280319213867187500000000000000000000}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}