Evaluate
\frac{313}{42}\approx 7.452380952
Factor
\frac{313}{2 \cdot 3 \cdot 7} = 7\frac{19}{42} = 7.4523809523809526
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)313}\\\end{array}
Use the 1^{st} digit 3 from dividend 313
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)313}\\\end{array}
Since 3 is less than 42, use the next digit 1 from dividend 313 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)313}\\\end{array}
Use the 2^{nd} digit 1 from dividend 313
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)313}\\\end{array}
Since 31 is less than 42, use the next digit 3 from dividend 313 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)313}\\\end{array}
Use the 3^{rd} digit 3 from dividend 313
\begin{array}{l}\phantom{42)}007\phantom{6}\\42\overline{)313}\\\phantom{42)}\underline{\phantom{}294\phantom{}}\\\phantom{42)9}19\\\end{array}
Find closest multiple of 42 to 313. We see that 7 \times 42 = 294 is the nearest. Now subtract 294 from 313 to get reminder 19. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }19
Since 19 is less than 42, stop the division. The reminder is 19. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}