Evaluate
\frac{13}{3}\approx 4.333333333
Factor
\frac{13}{3} = 4\frac{1}{3} = 4.333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)312}\\\end{array}
Use the 1^{st} digit 3 from dividend 312
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)312}\\\end{array}
Since 3 is less than 72, use the next digit 1 from dividend 312 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)312}\\\end{array}
Use the 2^{nd} digit 1 from dividend 312
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)312}\\\end{array}
Since 31 is less than 72, use the next digit 2 from dividend 312 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)312}\\\end{array}
Use the 3^{rd} digit 2 from dividend 312
\begin{array}{l}\phantom{72)}004\phantom{6}\\72\overline{)312}\\\phantom{72)}\underline{\phantom{}288\phantom{}}\\\phantom{72)9}24\\\end{array}
Find closest multiple of 72 to 312. We see that 4 \times 72 = 288 is the nearest. Now subtract 288 from 312 to get reminder 24. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }24
Since 24 is less than 72, stop the division. The reminder is 24. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}