Evaluate
\frac{52}{3}\approx 17.333333333
Factor
\frac{2 ^ {2} \cdot 13}{3} = 17\frac{1}{3} = 17.333333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)312}\\\end{array}
Use the 1^{st} digit 3 from dividend 312
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)312}\\\end{array}
Since 3 is less than 18, use the next digit 1 from dividend 312 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)312}\\\end{array}
Use the 2^{nd} digit 1 from dividend 312
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)312}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}13\\\end{array}
Find closest multiple of 18 to 31. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 31 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)312}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}132\\\end{array}
Use the 3^{rd} digit 2 from dividend 312
\begin{array}{l}\phantom{18)}017\phantom{6}\\18\overline{)312}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)}132\\\phantom{18)}\underline{\phantom{}126\phantom{}}\\\phantom{18)99}6\\\end{array}
Find closest multiple of 18 to 132. We see that 7 \times 18 = 126 is the nearest. Now subtract 126 from 132 to get reminder 6. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }6
Since 6 is less than 18, stop the division. The reminder is 6. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}