Solve for a
a=\frac{15\sqrt{47}-95}{31}\approx 0.252736097
a=\frac{-15\sqrt{47}-95}{31}\approx -6.381768355
Share
Copied to clipboard
31a^{2}+190a-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-190±\sqrt{190^{2}-4\times 31\left(-50\right)}}{2\times 31}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 31 for a, 190 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-190±\sqrt{36100-4\times 31\left(-50\right)}}{2\times 31}
Square 190.
a=\frac{-190±\sqrt{36100-124\left(-50\right)}}{2\times 31}
Multiply -4 times 31.
a=\frac{-190±\sqrt{36100+6200}}{2\times 31}
Multiply -124 times -50.
a=\frac{-190±\sqrt{42300}}{2\times 31}
Add 36100 to 6200.
a=\frac{-190±30\sqrt{47}}{2\times 31}
Take the square root of 42300.
a=\frac{-190±30\sqrt{47}}{62}
Multiply 2 times 31.
a=\frac{30\sqrt{47}-190}{62}
Now solve the equation a=\frac{-190±30\sqrt{47}}{62} when ± is plus. Add -190 to 30\sqrt{47}.
a=\frac{15\sqrt{47}-95}{31}
Divide -190+30\sqrt{47} by 62.
a=\frac{-30\sqrt{47}-190}{62}
Now solve the equation a=\frac{-190±30\sqrt{47}}{62} when ± is minus. Subtract 30\sqrt{47} from -190.
a=\frac{-15\sqrt{47}-95}{31}
Divide -190-30\sqrt{47} by 62.
a=\frac{15\sqrt{47}-95}{31} a=\frac{-15\sqrt{47}-95}{31}
The equation is now solved.
31a^{2}+190a-50=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
31a^{2}+190a-50-\left(-50\right)=-\left(-50\right)
Add 50 to both sides of the equation.
31a^{2}+190a=-\left(-50\right)
Subtracting -50 from itself leaves 0.
31a^{2}+190a=50
Subtract -50 from 0.
\frac{31a^{2}+190a}{31}=\frac{50}{31}
Divide both sides by 31.
a^{2}+\frac{190}{31}a=\frac{50}{31}
Dividing by 31 undoes the multiplication by 31.
a^{2}+\frac{190}{31}a+\left(\frac{95}{31}\right)^{2}=\frac{50}{31}+\left(\frac{95}{31}\right)^{2}
Divide \frac{190}{31}, the coefficient of the x term, by 2 to get \frac{95}{31}. Then add the square of \frac{95}{31} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{190}{31}a+\frac{9025}{961}=\frac{50}{31}+\frac{9025}{961}
Square \frac{95}{31} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{190}{31}a+\frac{9025}{961}=\frac{10575}{961}
Add \frac{50}{31} to \frac{9025}{961} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{95}{31}\right)^{2}=\frac{10575}{961}
Factor a^{2}+\frac{190}{31}a+\frac{9025}{961}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{95}{31}\right)^{2}}=\sqrt{\frac{10575}{961}}
Take the square root of both sides of the equation.
a+\frac{95}{31}=\frac{15\sqrt{47}}{31} a+\frac{95}{31}=-\frac{15\sqrt{47}}{31}
Simplify.
a=\frac{15\sqrt{47}-95}{31} a=\frac{-15\sqrt{47}-95}{31}
Subtract \frac{95}{31} from both sides of the equation.
x ^ 2 +\frac{190}{31}x -\frac{50}{31} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 31
r + s = -\frac{190}{31} rs = -\frac{50}{31}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{95}{31} - u s = -\frac{95}{31} + u
Two numbers r and s sum up to -\frac{190}{31} exactly when the average of the two numbers is \frac{1}{2}*-\frac{190}{31} = -\frac{95}{31}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{95}{31} - u) (-\frac{95}{31} + u) = -\frac{50}{31}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{50}{31}
\frac{9025}{961} - u^2 = -\frac{50}{31}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{50}{31}-\frac{9025}{961} = -\frac{10575}{961}
Simplify the expression by subtracting \frac{9025}{961} on both sides
u^2 = \frac{10575}{961} u = \pm\sqrt{\frac{10575}{961}} = \pm \frac{\sqrt{10575}}{31}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{95}{31} - \frac{\sqrt{10575}}{31} = -6.382 s = -\frac{95}{31} + \frac{\sqrt{10575}}{31} = 0.253
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}