Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

2\left(309\times 3+1\right)=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2\left(927+1\right)=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Multiply 309 and 3 to get 927.
2\times 928=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Add 927 and 1 to get 928.
1856=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Multiply 2 and 928 to get 1856.
1856=3\left(-\frac{4}{3}+n\times \frac{8}{3}-\frac{8}{3}\right)n
Use the distributive property to multiply n-1 by \frac{8}{3}.
1856=3\left(\frac{-4-8}{3}+n\times \frac{8}{3}\right)n
Since -\frac{4}{3} and \frac{8}{3} have the same denominator, subtract them by subtracting their numerators.
1856=3\left(\frac{-12}{3}+n\times \frac{8}{3}\right)n
Subtract 8 from -4 to get -12.
1856=3\left(-4+n\times \frac{8}{3}\right)n
Divide -12 by 3 to get -4.
1856=\left(-12+3n\times \frac{8}{3}\right)n
Use the distributive property to multiply 3 by -4+n\times \frac{8}{3}.
1856=\left(-12+8n\right)n
Cancel out 3 and 3.
1856=-12n+8n^{2}
Use the distributive property to multiply -12+8n by n.
-12n+8n^{2}=1856
Swap sides so that all variable terms are on the left hand side.
-12n+8n^{2}-1856=0
Subtract 1856 from both sides.
8n^{2}-12n-1856=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 8\left(-1856\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -12 for b, and -1856 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-12\right)±\sqrt{144-4\times 8\left(-1856\right)}}{2\times 8}
Square -12.
n=\frac{-\left(-12\right)±\sqrt{144-32\left(-1856\right)}}{2\times 8}
Multiply -4 times 8.
n=\frac{-\left(-12\right)±\sqrt{144+59392}}{2\times 8}
Multiply -32 times -1856.
n=\frac{-\left(-12\right)±\sqrt{59536}}{2\times 8}
Add 144 to 59392.
n=\frac{-\left(-12\right)±244}{2\times 8}
Take the square root of 59536.
n=\frac{12±244}{2\times 8}
The opposite of -12 is 12.
n=\frac{12±244}{16}
Multiply 2 times 8.
n=\frac{256}{16}
Now solve the equation n=\frac{12±244}{16} when ± is plus. Add 12 to 244.
n=16
Divide 256 by 16.
n=-\frac{232}{16}
Now solve the equation n=\frac{12±244}{16} when ± is minus. Subtract 244 from 12.
n=-\frac{29}{2}
Reduce the fraction \frac{-232}{16} to lowest terms by extracting and canceling out 8.
n=16 n=-\frac{29}{2}
The equation is now solved.
2\left(309\times 3+1\right)=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2\left(927+1\right)=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Multiply 309 and 3 to get 927.
2\times 928=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Add 927 and 1 to get 928.
1856=3\left(-\frac{4}{3}+\left(n-1\right)\times \frac{8}{3}\right)n
Multiply 2 and 928 to get 1856.
1856=3\left(-\frac{4}{3}+n\times \frac{8}{3}-\frac{8}{3}\right)n
Use the distributive property to multiply n-1 by \frac{8}{3}.
1856=3\left(\frac{-4-8}{3}+n\times \frac{8}{3}\right)n
Since -\frac{4}{3} and \frac{8}{3} have the same denominator, subtract them by subtracting their numerators.
1856=3\left(\frac{-12}{3}+n\times \frac{8}{3}\right)n
Subtract 8 from -4 to get -12.
1856=3\left(-4+n\times \frac{8}{3}\right)n
Divide -12 by 3 to get -4.
1856=\left(-12+3n\times \frac{8}{3}\right)n
Use the distributive property to multiply 3 by -4+n\times \frac{8}{3}.
1856=\left(-12+8n\right)n
Cancel out 3 and 3.
1856=-12n+8n^{2}
Use the distributive property to multiply -12+8n by n.
-12n+8n^{2}=1856
Swap sides so that all variable terms are on the left hand side.
8n^{2}-12n=1856
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8n^{2}-12n}{8}=\frac{1856}{8}
Divide both sides by 8.
n^{2}+\left(-\frac{12}{8}\right)n=\frac{1856}{8}
Dividing by 8 undoes the multiplication by 8.
n^{2}-\frac{3}{2}n=\frac{1856}{8}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
n^{2}-\frac{3}{2}n=232
Divide 1856 by 8.
n^{2}-\frac{3}{2}n+\left(-\frac{3}{4}\right)^{2}=232+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{3}{2}n+\frac{9}{16}=232+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{3}{2}n+\frac{9}{16}=\frac{3721}{16}
Add 232 to \frac{9}{16}.
\left(n-\frac{3}{4}\right)^{2}=\frac{3721}{16}
Factor n^{2}-\frac{3}{2}n+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{3}{4}\right)^{2}}=\sqrt{\frac{3721}{16}}
Take the square root of both sides of the equation.
n-\frac{3}{4}=\frac{61}{4} n-\frac{3}{4}=-\frac{61}{4}
Simplify.
n=16 n=-\frac{29}{2}
Add \frac{3}{4} to both sides of the equation.