Evaluate
\frac{30864}{25}=1234.56
Factor
\frac{2 ^ {4} \cdot 3 \cdot 643}{5 ^ {2}} = 1234\frac{14}{25} = 1234.56
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)30864}\\\end{array}
Use the 1^{st} digit 3 from dividend 30864
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)30864}\\\end{array}
Since 3 is less than 25, use the next digit 0 from dividend 30864 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)30864}\\\end{array}
Use the 2^{nd} digit 0 from dividend 30864
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}5\\\end{array}
Find closest multiple of 25 to 30. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 30 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{25)}01\phantom{5}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}58\\\end{array}
Use the 3^{rd} digit 8 from dividend 30864
\begin{array}{l}\phantom{25)}012\phantom{6}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}58\\\phantom{25)}\underline{\phantom{9}50\phantom{99}}\\\phantom{25)99}8\\\end{array}
Find closest multiple of 25 to 58. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 58 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{25)}012\phantom{7}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}58\\\phantom{25)}\underline{\phantom{9}50\phantom{99}}\\\phantom{25)99}86\\\end{array}
Use the 4^{th} digit 6 from dividend 30864
\begin{array}{l}\phantom{25)}0123\phantom{8}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}58\\\phantom{25)}\underline{\phantom{9}50\phantom{99}}\\\phantom{25)99}86\\\phantom{25)}\underline{\phantom{99}75\phantom{9}}\\\phantom{25)99}11\\\end{array}
Find closest multiple of 25 to 86. We see that 3 \times 25 = 75 is the nearest. Now subtract 75 from 86 to get reminder 11. Add 3 to quotient.
\begin{array}{l}\phantom{25)}0123\phantom{9}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}58\\\phantom{25)}\underline{\phantom{9}50\phantom{99}}\\\phantom{25)99}86\\\phantom{25)}\underline{\phantom{99}75\phantom{9}}\\\phantom{25)99}114\\\end{array}
Use the 5^{th} digit 4 from dividend 30864
\begin{array}{l}\phantom{25)}01234\phantom{10}\\25\overline{)30864}\\\phantom{25)}\underline{\phantom{}25\phantom{999}}\\\phantom{25)9}58\\\phantom{25)}\underline{\phantom{9}50\phantom{99}}\\\phantom{25)99}86\\\phantom{25)}\underline{\phantom{99}75\phantom{9}}\\\phantom{25)99}114\\\phantom{25)}\underline{\phantom{99}100\phantom{}}\\\phantom{25)999}14\\\end{array}
Find closest multiple of 25 to 114. We see that 4 \times 25 = 100 is the nearest. Now subtract 100 from 114 to get reminder 14. Add 4 to quotient.
\text{Quotient: }1234 \text{Reminder: }14
Since 14 is less than 25, stop the division. The reminder is 14. The topmost line 01234 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1234.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}