Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

308=x^{2}+8x
Use the distributive property to multiply x by x+8.
x^{2}+8x=308
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x-308=0
Subtract 308 from both sides.
x=\frac{-8±\sqrt{8^{2}-4\left(-308\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -308 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-308\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+1232}}{2}
Multiply -4 times -308.
x=\frac{-8±\sqrt{1296}}{2}
Add 64 to 1232.
x=\frac{-8±36}{2}
Take the square root of 1296.
x=\frac{28}{2}
Now solve the equation x=\frac{-8±36}{2} when ± is plus. Add -8 to 36.
x=14
Divide 28 by 2.
x=-\frac{44}{2}
Now solve the equation x=\frac{-8±36}{2} when ± is minus. Subtract 36 from -8.
x=-22
Divide -44 by 2.
x=14 x=-22
The equation is now solved.
308=x^{2}+8x
Use the distributive property to multiply x by x+8.
x^{2}+8x=308
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x+4^{2}=308+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=308+16
Square 4.
x^{2}+8x+16=324
Add 308 to 16.
\left(x+4\right)^{2}=324
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{324}
Take the square root of both sides of the equation.
x+4=18 x+4=-18
Simplify.
x=14 x=-22
Subtract 4 from both sides of the equation.