Evaluate
\frac{303}{14}\approx 21.642857143
Factor
\frac{3 \cdot 101}{2 \cdot 7} = 21\frac{9}{14} = 21.642857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)303}\\\end{array}
Use the 1^{st} digit 3 from dividend 303
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)303}\\\end{array}
Since 3 is less than 14, use the next digit 0 from dividend 303 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)303}\\\end{array}
Use the 2^{nd} digit 0 from dividend 303
\begin{array}{l}\phantom{14)}02\phantom{4}\\14\overline{)303}\\\phantom{14)}\underline{\phantom{}28\phantom{9}}\\\phantom{14)9}2\\\end{array}
Find closest multiple of 14 to 30. We see that 2 \times 14 = 28 is the nearest. Now subtract 28 from 30 to get reminder 2. Add 2 to quotient.
\begin{array}{l}\phantom{14)}02\phantom{5}\\14\overline{)303}\\\phantom{14)}\underline{\phantom{}28\phantom{9}}\\\phantom{14)9}23\\\end{array}
Use the 3^{rd} digit 3 from dividend 303
\begin{array}{l}\phantom{14)}021\phantom{6}\\14\overline{)303}\\\phantom{14)}\underline{\phantom{}28\phantom{9}}\\\phantom{14)9}23\\\phantom{14)}\underline{\phantom{9}14\phantom{}}\\\phantom{14)99}9\\\end{array}
Find closest multiple of 14 to 23. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 23 to get reminder 9. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }9
Since 9 is less than 14, stop the division. The reminder is 9. The topmost line 021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}