Evaluate
\frac{25000}{7}\approx 3571.428571429
Factor
\frac{2 ^ {3} \cdot 5 ^ {5}}{7} = 3571\frac{3}{7} = 3571.4285714285716
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)300000}\\\end{array}
Use the 1^{st} digit 3 from dividend 300000
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)300000}\\\end{array}
Since 3 is less than 84, use the next digit 0 from dividend 300000 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)300000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300000
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)300000}\\\end{array}
Since 30 is less than 84, use the next digit 0 from dividend 300000 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)300000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300000
\begin{array}{l}\phantom{84)}003\phantom{6}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}48\\\end{array}
Find closest multiple of 84 to 300. We see that 3 \times 84 = 252 is the nearest. Now subtract 252 from 300 to get reminder 48. Add 3 to quotient.
\begin{array}{l}\phantom{84)}003\phantom{7}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}480\\\end{array}
Use the 4^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{84)}0035\phantom{8}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}480\\\phantom{84)}\underline{\phantom{9}420\phantom{99}}\\\phantom{84)99}60\\\end{array}
Find closest multiple of 84 to 480. We see that 5 \times 84 = 420 is the nearest. Now subtract 420 from 480 to get reminder 60. Add 5 to quotient.
\begin{array}{l}\phantom{84)}0035\phantom{9}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}480\\\phantom{84)}\underline{\phantom{9}420\phantom{99}}\\\phantom{84)99}600\\\end{array}
Use the 5^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{84)}00357\phantom{10}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}480\\\phantom{84)}\underline{\phantom{9}420\phantom{99}}\\\phantom{84)99}600\\\phantom{84)}\underline{\phantom{99}588\phantom{9}}\\\phantom{84)999}12\\\end{array}
Find closest multiple of 84 to 600. We see that 7 \times 84 = 588 is the nearest. Now subtract 588 from 600 to get reminder 12. Add 7 to quotient.
\begin{array}{l}\phantom{84)}00357\phantom{11}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}480\\\phantom{84)}\underline{\phantom{9}420\phantom{99}}\\\phantom{84)99}600\\\phantom{84)}\underline{\phantom{99}588\phantom{9}}\\\phantom{84)999}120\\\end{array}
Use the 6^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{84)}003571\phantom{12}\\84\overline{)300000}\\\phantom{84)}\underline{\phantom{}252\phantom{999}}\\\phantom{84)9}480\\\phantom{84)}\underline{\phantom{9}420\phantom{99}}\\\phantom{84)99}600\\\phantom{84)}\underline{\phantom{99}588\phantom{9}}\\\phantom{84)999}120\\\phantom{84)}\underline{\phantom{9999}84\phantom{}}\\\phantom{84)9999}36\\\end{array}
Find closest multiple of 84 to 120. We see that 1 \times 84 = 84 is the nearest. Now subtract 84 from 120 to get reminder 36. Add 1 to quotient.
\text{Quotient: }3571 \text{Reminder: }36
Since 36 is less than 84, stop the division. The reminder is 36. The topmost line 003571 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3571.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}