Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-12t^{2}+800t+3000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-800±\sqrt{800^{2}-4\left(-12\right)\times 3000}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-800±\sqrt{640000-4\left(-12\right)\times 3000}}{2\left(-12\right)}
Square 800.
t=\frac{-800±\sqrt{640000+48\times 3000}}{2\left(-12\right)}
Multiply -4 times -12.
t=\frac{-800±\sqrt{640000+144000}}{2\left(-12\right)}
Multiply 48 times 3000.
t=\frac{-800±\sqrt{784000}}{2\left(-12\right)}
Add 640000 to 144000.
t=\frac{-800±280\sqrt{10}}{2\left(-12\right)}
Take the square root of 784000.
t=\frac{-800±280\sqrt{10}}{-24}
Multiply 2 times -12.
t=\frac{280\sqrt{10}-800}{-24}
Now solve the equation t=\frac{-800±280\sqrt{10}}{-24} when ± is plus. Add -800 to 280\sqrt{10}.
t=\frac{100-35\sqrt{10}}{3}
Divide -800+280\sqrt{10} by -24.
t=\frac{-280\sqrt{10}-800}{-24}
Now solve the equation t=\frac{-800±280\sqrt{10}}{-24} when ± is minus. Subtract 280\sqrt{10} from -800.
t=\frac{35\sqrt{10}+100}{3}
Divide -800-280\sqrt{10} by -24.
-12t^{2}+800t+3000=-12\left(t-\frac{100-35\sqrt{10}}{3}\right)\left(t-\frac{35\sqrt{10}+100}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{100-35\sqrt{10}}{3} for x_{1} and \frac{100+35\sqrt{10}}{3} for x_{2}.