Evaluate
\frac{300}{19}\approx 15.789473684
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{19} = 15\frac{15}{19} = 15.789473684210526
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)300}\\\end{array}
Since 3 is less than 19, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{19)}01\phantom{4}\\19\overline{)300}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}11\\\end{array}
Find closest multiple of 19 to 30. We see that 1 \times 19 = 19 is the nearest. Now subtract 19 from 30 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{19)}01\phantom{5}\\19\overline{)300}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}110\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{19)}015\phantom{6}\\19\overline{)300}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}110\\\phantom{19)}\underline{\phantom{9}95\phantom{}}\\\phantom{19)9}15\\\end{array}
Find closest multiple of 19 to 110. We see that 5 \times 19 = 95 is the nearest. Now subtract 95 from 110 to get reminder 15. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }15
Since 15 is less than 19, stop the division. The reminder is 15. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}