Solve for x (complex solution)
x=\frac{25+5\sqrt{23}i}{2}\approx 12.5+11.989578808i
x=\frac{-5\sqrt{23}i+25}{2}\approx 12.5-11.989578808i
Graph
Share
Copied to clipboard
-x^{2}+25x=300
Swap sides so that all variable terms are on the left hand side.
-x^{2}+25x-300=0
Subtract 300 from both sides.
x=\frac{-25±\sqrt{25^{2}-4\left(-1\right)\left(-300\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 25 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-1\right)\left(-300\right)}}{2\left(-1\right)}
Square 25.
x=\frac{-25±\sqrt{625+4\left(-300\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-25±\sqrt{625-1200}}{2\left(-1\right)}
Multiply 4 times -300.
x=\frac{-25±\sqrt{-575}}{2\left(-1\right)}
Add 625 to -1200.
x=\frac{-25±5\sqrt{23}i}{2\left(-1\right)}
Take the square root of -575.
x=\frac{-25±5\sqrt{23}i}{-2}
Multiply 2 times -1.
x=\frac{-25+5\sqrt{23}i}{-2}
Now solve the equation x=\frac{-25±5\sqrt{23}i}{-2} when ± is plus. Add -25 to 5i\sqrt{23}.
x=\frac{-5\sqrt{23}i+25}{2}
Divide -25+5i\sqrt{23} by -2.
x=\frac{-5\sqrt{23}i-25}{-2}
Now solve the equation x=\frac{-25±5\sqrt{23}i}{-2} when ± is minus. Subtract 5i\sqrt{23} from -25.
x=\frac{25+5\sqrt{23}i}{2}
Divide -25-5i\sqrt{23} by -2.
x=\frac{-5\sqrt{23}i+25}{2} x=\frac{25+5\sqrt{23}i}{2}
The equation is now solved.
-x^{2}+25x=300
Swap sides so that all variable terms are on the left hand side.
\frac{-x^{2}+25x}{-1}=\frac{300}{-1}
Divide both sides by -1.
x^{2}+\frac{25}{-1}x=\frac{300}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-25x=\frac{300}{-1}
Divide 25 by -1.
x^{2}-25x=-300
Divide 300 by -1.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-300+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=-300+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=-\frac{575}{4}
Add -300 to \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=-\frac{575}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{-\frac{575}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{5\sqrt{23}i}{2} x-\frac{25}{2}=-\frac{5\sqrt{23}i}{2}
Simplify.
x=\frac{25+5\sqrt{23}i}{2} x=\frac{-5\sqrt{23}i+25}{2}
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}