Solve for x
x = \frac{\sqrt{1081} - 1}{18} \approx 1.771031358
x=\frac{-\sqrt{1081}-1}{18}\approx -1.882142469
Graph
Share
Copied to clipboard
30-x-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}-x+30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-9\right)\times 30}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -1 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+36\times 30}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-1\right)±\sqrt{1+1080}}{2\left(-9\right)}
Multiply 36 times 30.
x=\frac{-\left(-1\right)±\sqrt{1081}}{2\left(-9\right)}
Add 1 to 1080.
x=\frac{1±\sqrt{1081}}{2\left(-9\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{1081}}{-18}
Multiply 2 times -9.
x=\frac{\sqrt{1081}+1}{-18}
Now solve the equation x=\frac{1±\sqrt{1081}}{-18} when ± is plus. Add 1 to \sqrt{1081}.
x=\frac{-\sqrt{1081}-1}{18}
Divide 1+\sqrt{1081} by -18.
x=\frac{1-\sqrt{1081}}{-18}
Now solve the equation x=\frac{1±\sqrt{1081}}{-18} when ± is minus. Subtract \sqrt{1081} from 1.
x=\frac{\sqrt{1081}-1}{18}
Divide 1-\sqrt{1081} by -18.
x=\frac{-\sqrt{1081}-1}{18} x=\frac{\sqrt{1081}-1}{18}
The equation is now solved.
30-x-9x^{2}=0
Subtract 9x^{2} from both sides.
-x-9x^{2}=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
-9x^{2}-x=-30
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}-x}{-9}=-\frac{30}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{1}{-9}\right)x=-\frac{30}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{1}{9}x=-\frac{30}{-9}
Divide -1 by -9.
x^{2}+\frac{1}{9}x=\frac{10}{3}
Reduce the fraction \frac{-30}{-9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{9}x+\left(\frac{1}{18}\right)^{2}=\frac{10}{3}+\left(\frac{1}{18}\right)^{2}
Divide \frac{1}{9}, the coefficient of the x term, by 2 to get \frac{1}{18}. Then add the square of \frac{1}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{9}x+\frac{1}{324}=\frac{10}{3}+\frac{1}{324}
Square \frac{1}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{9}x+\frac{1}{324}=\frac{1081}{324}
Add \frac{10}{3} to \frac{1}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{18}\right)^{2}=\frac{1081}{324}
Factor x^{2}+\frac{1}{9}x+\frac{1}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{18}\right)^{2}}=\sqrt{\frac{1081}{324}}
Take the square root of both sides of the equation.
x+\frac{1}{18}=\frac{\sqrt{1081}}{18} x+\frac{1}{18}=-\frac{\sqrt{1081}}{18}
Simplify.
x=\frac{\sqrt{1081}-1}{18} x=\frac{-\sqrt{1081}-1}{18}
Subtract \frac{1}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}