Solve for x (complex solution)
x=\frac{-40+i\times 10\sqrt{131}}{49}\approx -0.816326531+2.335821049i
x=\frac{-i\times 10\sqrt{131}-40}{49}\approx -0.816326531-2.335821049i
Graph
Share
Copied to clipboard
-8x-4.9x^{2}=30
Swap sides so that all variable terms are on the left hand side.
-8x-4.9x^{2}-30=0
Subtract 30 from both sides.
-4.9x^{2}-8x-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-4.9\right)\left(-30\right)}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, -8 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-4.9\right)\left(-30\right)}}{2\left(-4.9\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+19.6\left(-30\right)}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
x=\frac{-\left(-8\right)±\sqrt{64-588}}{2\left(-4.9\right)}
Multiply 19.6 times -30.
x=\frac{-\left(-8\right)±\sqrt{-524}}{2\left(-4.9\right)}
Add 64 to -588.
x=\frac{-\left(-8\right)±2\sqrt{131}i}{2\left(-4.9\right)}
Take the square root of -524.
x=\frac{8±2\sqrt{131}i}{2\left(-4.9\right)}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{131}i}{-9.8}
Multiply 2 times -4.9.
x=\frac{8+2\sqrt{131}i}{-9.8}
Now solve the equation x=\frac{8±2\sqrt{131}i}{-9.8} when ± is plus. Add 8 to 2i\sqrt{131}.
x=\frac{-10\sqrt{131}i-40}{49}
Divide 8+2i\sqrt{131} by -9.8 by multiplying 8+2i\sqrt{131} by the reciprocal of -9.8.
x=\frac{-2\sqrt{131}i+8}{-9.8}
Now solve the equation x=\frac{8±2\sqrt{131}i}{-9.8} when ± is minus. Subtract 2i\sqrt{131} from 8.
x=\frac{-40+10\sqrt{131}i}{49}
Divide 8-2i\sqrt{131} by -9.8 by multiplying 8-2i\sqrt{131} by the reciprocal of -9.8.
x=\frac{-10\sqrt{131}i-40}{49} x=\frac{-40+10\sqrt{131}i}{49}
The equation is now solved.
-8x-4.9x^{2}=30
Swap sides so that all variable terms are on the left hand side.
-4.9x^{2}-8x=30
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4.9x^{2}-8x}{-4.9}=\frac{30}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{8}{-4.9}\right)x=\frac{30}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
x^{2}+\frac{80}{49}x=\frac{30}{-4.9}
Divide -8 by -4.9 by multiplying -8 by the reciprocal of -4.9.
x^{2}+\frac{80}{49}x=-\frac{300}{49}
Divide 30 by -4.9 by multiplying 30 by the reciprocal of -4.9.
x^{2}+\frac{80}{49}x+\frac{40}{49}^{2}=-\frac{300}{49}+\frac{40}{49}^{2}
Divide \frac{80}{49}, the coefficient of the x term, by 2 to get \frac{40}{49}. Then add the square of \frac{40}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{80}{49}x+\frac{1600}{2401}=-\frac{300}{49}+\frac{1600}{2401}
Square \frac{40}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{80}{49}x+\frac{1600}{2401}=-\frac{13100}{2401}
Add -\frac{300}{49} to \frac{1600}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{40}{49}\right)^{2}=-\frac{13100}{2401}
Factor x^{2}+\frac{80}{49}x+\frac{1600}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{40}{49}\right)^{2}}=\sqrt{-\frac{13100}{2401}}
Take the square root of both sides of the equation.
x+\frac{40}{49}=\frac{10\sqrt{131}i}{49} x+\frac{40}{49}=-\frac{10\sqrt{131}i}{49}
Simplify.
x=\frac{-40+10\sqrt{131}i}{49} x=\frac{-10\sqrt{131}i-40}{49}
Subtract \frac{40}{49} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}