Solve for x
x=-\frac{6}{19}\approx -0.315789474
Graph
Share
Copied to clipboard
30x-\left(-x\right)-6+5x+4=-\left(5x+6\right)-8+3x
To find the opposite of -x+6, find the opposite of each term.
35x-\left(-x\right)-6+4=-\left(5x+6\right)-8+3x
Combine 30x and 5x to get 35x.
35x-\left(-x\right)-2=-\left(5x+6\right)-8+3x
Add -6 and 4 to get -2.
35x-\left(-x\right)-2=-5x-6-8+3x
To find the opposite of 5x+6, find the opposite of each term.
35x-\left(-x\right)-2=-5x-14+3x
Subtract 8 from -6 to get -14.
35x-\left(-x\right)-2=-2x-14
Combine -5x and 3x to get -2x.
35x-\left(-x\right)-2+2x=-14
Add 2x to both sides.
37x-\left(-x\right)-2=-14
Combine 35x and 2x to get 37x.
37x-\left(-x\right)=-14+2
Add 2 to both sides.
37x-\left(-x\right)=-12
Add -14 and 2 to get -12.
37x+x=-12
Multiply -1 and -1 to get 1.
38x=-12
Combine 37x and x to get 38x.
x=\frac{-12}{38}
Divide both sides by 38.
x=-\frac{6}{19}
Reduce the fraction \frac{-12}{38} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}