Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

30t=2.25\left(t^{2}+20t+100\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+10\right)^{2}.
30t=2.25t^{2}+45t+225
Use the distributive property to multiply 2.25 by t^{2}+20t+100.
30t-2.25t^{2}=45t+225
Subtract 2.25t^{2} from both sides.
30t-2.25t^{2}-45t=225
Subtract 45t from both sides.
-15t-2.25t^{2}=225
Combine 30t and -45t to get -15t.
-15t-2.25t^{2}-225=0
Subtract 225 from both sides.
-2.25t^{2}-15t-225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-2.25\right)\left(-225\right)}}{2\left(-2.25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2.25 for a, -15 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-15\right)±\sqrt{225-4\left(-2.25\right)\left(-225\right)}}{2\left(-2.25\right)}
Square -15.
t=\frac{-\left(-15\right)±\sqrt{225+9\left(-225\right)}}{2\left(-2.25\right)}
Multiply -4 times -2.25.
t=\frac{-\left(-15\right)±\sqrt{225-2025}}{2\left(-2.25\right)}
Multiply 9 times -225.
t=\frac{-\left(-15\right)±\sqrt{-1800}}{2\left(-2.25\right)}
Add 225 to -2025.
t=\frac{-\left(-15\right)±30\sqrt{2}i}{2\left(-2.25\right)}
Take the square root of -1800.
t=\frac{15±30\sqrt{2}i}{2\left(-2.25\right)}
The opposite of -15 is 15.
t=\frac{15±30\sqrt{2}i}{-4.5}
Multiply 2 times -2.25.
t=\frac{15+30\sqrt{2}i}{-4.5}
Now solve the equation t=\frac{15±30\sqrt{2}i}{-4.5} when ± is plus. Add 15 to 30i\sqrt{2}.
t=\frac{-20\sqrt{2}i-10}{3}
Divide 15+30i\sqrt{2} by -4.5 by multiplying 15+30i\sqrt{2} by the reciprocal of -4.5.
t=\frac{-30\sqrt{2}i+15}{-4.5}
Now solve the equation t=\frac{15±30\sqrt{2}i}{-4.5} when ± is minus. Subtract 30i\sqrt{2} from 15.
t=\frac{-10+20\sqrt{2}i}{3}
Divide 15-30i\sqrt{2} by -4.5 by multiplying 15-30i\sqrt{2} by the reciprocal of -4.5.
t=\frac{-20\sqrt{2}i-10}{3} t=\frac{-10+20\sqrt{2}i}{3}
The equation is now solved.
30t=2.25\left(t^{2}+20t+100\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+10\right)^{2}.
30t=2.25t^{2}+45t+225
Use the distributive property to multiply 2.25 by t^{2}+20t+100.
30t-2.25t^{2}=45t+225
Subtract 2.25t^{2} from both sides.
30t-2.25t^{2}-45t=225
Subtract 45t from both sides.
-15t-2.25t^{2}=225
Combine 30t and -45t to get -15t.
-2.25t^{2}-15t=225
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2.25t^{2}-15t}{-2.25}=\frac{225}{-2.25}
Divide both sides of the equation by -2.25, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{15}{-2.25}\right)t=\frac{225}{-2.25}
Dividing by -2.25 undoes the multiplication by -2.25.
t^{2}+\frac{20}{3}t=\frac{225}{-2.25}
Divide -15 by -2.25 by multiplying -15 by the reciprocal of -2.25.
t^{2}+\frac{20}{3}t=-100
Divide 225 by -2.25 by multiplying 225 by the reciprocal of -2.25.
t^{2}+\frac{20}{3}t+\frac{10}{3}^{2}=-100+\frac{10}{3}^{2}
Divide \frac{20}{3}, the coefficient of the x term, by 2 to get \frac{10}{3}. Then add the square of \frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{20}{3}t+\frac{100}{9}=-100+\frac{100}{9}
Square \frac{10}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{20}{3}t+\frac{100}{9}=-\frac{800}{9}
Add -100 to \frac{100}{9}.
\left(t+\frac{10}{3}\right)^{2}=-\frac{800}{9}
Factor t^{2}+\frac{20}{3}t+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{10}{3}\right)^{2}}=\sqrt{-\frac{800}{9}}
Take the square root of both sides of the equation.
t+\frac{10}{3}=\frac{20\sqrt{2}i}{3} t+\frac{10}{3}=-\frac{20\sqrt{2}i}{3}
Simplify.
t=\frac{-10+20\sqrt{2}i}{3} t=\frac{-20\sqrt{2}i-10}{3}
Subtract \frac{10}{3} from both sides of the equation.