Solve for r
r=-\frac{5}{6}\approx -0.833333333
r=0
Share
Copied to clipboard
30r^{2}+25r=0
Add 25r to both sides.
r\left(30r+25\right)=0
Factor out r.
r=0 r=-\frac{5}{6}
To find equation solutions, solve r=0 and 30r+25=0.
30r^{2}+25r=0
Add 25r to both sides.
r=\frac{-25±\sqrt{25^{2}}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, 25 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-25±25}{2\times 30}
Take the square root of 25^{2}.
r=\frac{-25±25}{60}
Multiply 2 times 30.
r=\frac{0}{60}
Now solve the equation r=\frac{-25±25}{60} when ± is plus. Add -25 to 25.
r=0
Divide 0 by 60.
r=-\frac{50}{60}
Now solve the equation r=\frac{-25±25}{60} when ± is minus. Subtract 25 from -25.
r=-\frac{5}{6}
Reduce the fraction \frac{-50}{60} to lowest terms by extracting and canceling out 10.
r=0 r=-\frac{5}{6}
The equation is now solved.
30r^{2}+25r=0
Add 25r to both sides.
\frac{30r^{2}+25r}{30}=\frac{0}{30}
Divide both sides by 30.
r^{2}+\frac{25}{30}r=\frac{0}{30}
Dividing by 30 undoes the multiplication by 30.
r^{2}+\frac{5}{6}r=\frac{0}{30}
Reduce the fraction \frac{25}{30} to lowest terms by extracting and canceling out 5.
r^{2}+\frac{5}{6}r=0
Divide 0 by 30.
r^{2}+\frac{5}{6}r+\left(\frac{5}{12}\right)^{2}=\left(\frac{5}{12}\right)^{2}
Divide \frac{5}{6}, the coefficient of the x term, by 2 to get \frac{5}{12}. Then add the square of \frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+\frac{5}{6}r+\frac{25}{144}=\frac{25}{144}
Square \frac{5}{12} by squaring both the numerator and the denominator of the fraction.
\left(r+\frac{5}{12}\right)^{2}=\frac{25}{144}
Factor r^{2}+\frac{5}{6}r+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{5}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Take the square root of both sides of the equation.
r+\frac{5}{12}=\frac{5}{12} r+\frac{5}{12}=-\frac{5}{12}
Simplify.
r=0 r=-\frac{5}{6}
Subtract \frac{5}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}