Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(6d-5d^{2}\right)
Factor out 5.
d\left(6-5d\right)
Consider 6d-5d^{2}. Factor out d.
5d\left(-5d+6\right)
Rewrite the complete factored expression.
-25d^{2}+30d=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-30±\sqrt{30^{2}}}{2\left(-25\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-30±30}{2\left(-25\right)}
Take the square root of 30^{2}.
d=\frac{-30±30}{-50}
Multiply 2 times -25.
d=\frac{0}{-50}
Now solve the equation d=\frac{-30±30}{-50} when ± is plus. Add -30 to 30.
d=0
Divide 0 by -50.
d=-\frac{60}{-50}
Now solve the equation d=\frac{-30±30}{-50} when ± is minus. Subtract 30 from -30.
d=\frac{6}{5}
Reduce the fraction \frac{-60}{-50} to lowest terms by extracting and canceling out 10.
-25d^{2}+30d=-25d\left(d-\frac{6}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{6}{5} for x_{2}.
-25d^{2}+30d=-25d\times \frac{-5d+6}{-5}
Subtract \frac{6}{5} from d by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-25d^{2}+30d=5d\left(-5d+6\right)
Cancel out 5, the greatest common factor in -25 and -5.