Factor
3b\left(5b-1\right)\left(2b+5\right)
Evaluate
3b\left(5b-1\right)\left(2b+5\right)
Share
Copied to clipboard
3\left(10b^{3}+23b^{2}-5b\right)
Factor out 3.
b\left(10b^{2}+23b-5\right)
Consider 10b^{3}+23b^{2}-5b. Factor out b.
p+q=23 pq=10\left(-5\right)=-50
Consider 10b^{2}+23b-5. Factor the expression by grouping. First, the expression needs to be rewritten as 10b^{2}+pb+qb-5. To find p and q, set up a system to be solved.
-1,50 -2,25 -5,10
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -50.
-1+50=49 -2+25=23 -5+10=5
Calculate the sum for each pair.
p=-2 q=25
The solution is the pair that gives sum 23.
\left(10b^{2}-2b\right)+\left(25b-5\right)
Rewrite 10b^{2}+23b-5 as \left(10b^{2}-2b\right)+\left(25b-5\right).
2b\left(5b-1\right)+5\left(5b-1\right)
Factor out 2b in the first and 5 in the second group.
\left(5b-1\right)\left(2b+5\right)
Factor out common term 5b-1 by using distributive property.
3b\left(5b-1\right)\left(2b+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}