Solve for a
a\geq -\frac{4999}{50}
Share
Copied to clipboard
6000a+\left(1-300a\right)\times 24\leq 120000
Multiply both sides of the equation by 200. Since 200 is positive, the inequality direction remains the same.
6000a+24-7200a\leq 120000
Use the distributive property to multiply 1-300a by 24.
-1200a+24\leq 120000
Combine 6000a and -7200a to get -1200a.
-1200a\leq 120000-24
Subtract 24 from both sides.
-1200a\leq 119976
Subtract 24 from 120000 to get 119976.
a\geq \frac{119976}{-1200}
Divide both sides by -1200. Since -1200 is negative, the inequality direction is changed.
a\geq -\frac{4999}{50}
Reduce the fraction \frac{119976}{-1200} to lowest terms by extracting and canceling out 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}