Solve for X
X=-2
X=0
Share
Copied to clipboard
30X+15X^{2}=0
Add 15X^{2} to both sides.
X\left(30+15X\right)=0
Factor out X.
X=0 X=-2
To find equation solutions, solve X=0 and 30+15X=0.
30X+15X^{2}=0
Add 15X^{2} to both sides.
15X^{2}+30X=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
X=\frac{-30±\sqrt{30^{2}}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 30 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
X=\frac{-30±30}{2\times 15}
Take the square root of 30^{2}.
X=\frac{-30±30}{30}
Multiply 2 times 15.
X=\frac{0}{30}
Now solve the equation X=\frac{-30±30}{30} when ± is plus. Add -30 to 30.
X=0
Divide 0 by 30.
X=-\frac{60}{30}
Now solve the equation X=\frac{-30±30}{30} when ± is minus. Subtract 30 from -30.
X=-2
Divide -60 by 30.
X=0 X=-2
The equation is now solved.
30X+15X^{2}=0
Add 15X^{2} to both sides.
15X^{2}+30X=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{15X^{2}+30X}{15}=\frac{0}{15}
Divide both sides by 15.
X^{2}+\frac{30}{15}X=\frac{0}{15}
Dividing by 15 undoes the multiplication by 15.
X^{2}+2X=\frac{0}{15}
Divide 30 by 15.
X^{2}+2X=0
Divide 0 by 15.
X^{2}+2X+1^{2}=1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
X^{2}+2X+1=1
Square 1.
\left(X+1\right)^{2}=1
Factor X^{2}+2X+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(X+1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
X+1=1 X+1=-1
Simplify.
X=0 X=-2
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}