Solve for x
x=11
x=4
Graph
Share
Copied to clipboard
\left(30-\left(x+1\right)-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(30-x-1-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
To find the opposite of x+1, find the opposite of each term.
\left(29-x-\left(16-x\right)\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Subtract 1 from 30 to get 29.
\left(29-x-16+x\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
To find the opposite of 16-x, find the opposite of each term.
\left(13-x+x\right)^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Subtract 16 from 29 to get 13.
13^{2}=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Combine -x and x to get 0.
169=\left(\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}\right)^{2}
Calculate 13 to the power of 2 and get 169.
169=\left(\sqrt{x^{2}+2x+1+\left(16-x\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
169=\left(\sqrt{x^{2}+2x+1+256-32x+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-x\right)^{2}.
169=\left(\sqrt{x^{2}+2x+257-32x+x^{2}}\right)^{2}
Add 1 and 256 to get 257.
169=\left(\sqrt{x^{2}-30x+257+x^{2}}\right)^{2}
Combine 2x and -32x to get -30x.
169=\left(\sqrt{2x^{2}-30x+257}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
169=2x^{2}-30x+257
Calculate \sqrt{2x^{2}-30x+257} to the power of 2 and get 2x^{2}-30x+257.
2x^{2}-30x+257=169
Swap sides so that all variable terms are on the left hand side.
2x^{2}-30x+257-169=0
Subtract 169 from both sides.
2x^{2}-30x+88=0
Subtract 169 from 257 to get 88.
x^{2}-15x+44=0
Divide both sides by 2.
a+b=-15 ab=1\times 44=44
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+44. To find a and b, set up a system to be solved.
-1,-44 -2,-22 -4,-11
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 44.
-1-44=-45 -2-22=-24 -4-11=-15
Calculate the sum for each pair.
a=-11 b=-4
The solution is the pair that gives sum -15.
\left(x^{2}-11x\right)+\left(-4x+44\right)
Rewrite x^{2}-15x+44 as \left(x^{2}-11x\right)+\left(-4x+44\right).
x\left(x-11\right)-4\left(x-11\right)
Factor out x in the first and -4 in the second group.
\left(x-11\right)\left(x-4\right)
Factor out common term x-11 by using distributive property.
x=11 x=4
To find equation solutions, solve x-11=0 and x-4=0.
30-\left(11+1\right)-\left(16-11\right)=\sqrt{\left(11+1\right)^{2}+\left(16-11\right)^{2}}
Substitute 11 for x in the equation 30-\left(x+1\right)-\left(16-x\right)=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}.
13=13
Simplify. The value x=11 satisfies the equation.
30-\left(4+1\right)-\left(16-4\right)=\sqrt{\left(4+1\right)^{2}+\left(16-4\right)^{2}}
Substitute 4 for x in the equation 30-\left(x+1\right)-\left(16-x\right)=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}.
13=13
Simplify. The value x=4 satisfies the equation.
x=11 x=4
List all solutions of -\left(x+1\right)-\left(16-x\right)+30=\sqrt{\left(x+1\right)^{2}+\left(16-x\right)^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}