Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(6x^{2}+x-2\right)
Factor out 5.
a+b=1 ab=6\left(-2\right)=-12
Consider 6x^{2}+x-2. Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-3 b=4
The solution is the pair that gives sum 1.
\left(6x^{2}-3x\right)+\left(4x-2\right)
Rewrite 6x^{2}+x-2 as \left(6x^{2}-3x\right)+\left(4x-2\right).
3x\left(2x-1\right)+2\left(2x-1\right)
Factor out 3x in the first and 2 in the second group.
\left(2x-1\right)\left(3x+2\right)
Factor out common term 2x-1 by using distributive property.
5\left(2x-1\right)\left(3x+2\right)
Rewrite the complete factored expression.
30x^{2}+5x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 30\left(-10\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\times 30\left(-10\right)}}{2\times 30}
Square 5.
x=\frac{-5±\sqrt{25-120\left(-10\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-5±\sqrt{25+1200}}{2\times 30}
Multiply -120 times -10.
x=\frac{-5±\sqrt{1225}}{2\times 30}
Add 25 to 1200.
x=\frac{-5±35}{2\times 30}
Take the square root of 1225.
x=\frac{-5±35}{60}
Multiply 2 times 30.
x=\frac{30}{60}
Now solve the equation x=\frac{-5±35}{60} when ± is plus. Add -5 to 35.
x=\frac{1}{2}
Reduce the fraction \frac{30}{60} to lowest terms by extracting and canceling out 30.
x=-\frac{40}{60}
Now solve the equation x=\frac{-5±35}{60} when ± is minus. Subtract 35 from -5.
x=-\frac{2}{3}
Reduce the fraction \frac{-40}{60} to lowest terms by extracting and canceling out 20.
30x^{2}+5x-10=30\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and -\frac{2}{3} for x_{2}.
30x^{2}+5x-10=30\left(x-\frac{1}{2}\right)\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30x^{2}+5x-10=30\times \frac{2x-1}{2}\left(x+\frac{2}{3}\right)
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+5x-10=30\times \frac{2x-1}{2}\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+5x-10=30\times \frac{\left(2x-1\right)\left(3x+2\right)}{2\times 3}
Multiply \frac{2x-1}{2} times \frac{3x+2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
30x^{2}+5x-10=30\times \frac{\left(2x-1\right)\left(3x+2\right)}{6}
Multiply 2 times 3.
30x^{2}+5x-10=5\left(2x-1\right)\left(3x+2\right)
Cancel out 6, the greatest common factor in 30 and 6.