Solve for x
x=10
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
600-4x^{2}-\left(30-2x\right)\left(20-2x\right)=200
Multiply 30 and 20 to get 600.
600-4x^{2}-\left(600-100x+4x^{2}\right)=200
Use the distributive property to multiply 30-2x by 20-2x and combine like terms.
600-4x^{2}-600+100x-4x^{2}=200
To find the opposite of 600-100x+4x^{2}, find the opposite of each term.
-4x^{2}+100x-4x^{2}=200
Subtract 600 from 600 to get 0.
-8x^{2}+100x=200
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
-8x^{2}+100x-200=0
Subtract 200 from both sides.
x=\frac{-100±\sqrt{100^{2}-4\left(-8\right)\left(-200\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 100 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-8\right)\left(-200\right)}}{2\left(-8\right)}
Square 100.
x=\frac{-100±\sqrt{10000+32\left(-200\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-100±\sqrt{10000-6400}}{2\left(-8\right)}
Multiply 32 times -200.
x=\frac{-100±\sqrt{3600}}{2\left(-8\right)}
Add 10000 to -6400.
x=\frac{-100±60}{2\left(-8\right)}
Take the square root of 3600.
x=\frac{-100±60}{-16}
Multiply 2 times -8.
x=-\frac{40}{-16}
Now solve the equation x=\frac{-100±60}{-16} when ± is plus. Add -100 to 60.
x=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
x=-\frac{160}{-16}
Now solve the equation x=\frac{-100±60}{-16} when ± is minus. Subtract 60 from -100.
x=10
Divide -160 by -16.
x=\frac{5}{2} x=10
The equation is now solved.
600-4x^{2}-\left(30-2x\right)\left(20-2x\right)=200
Multiply 30 and 20 to get 600.
600-4x^{2}-\left(600-100x+4x^{2}\right)=200
Use the distributive property to multiply 30-2x by 20-2x and combine like terms.
600-4x^{2}-600+100x-4x^{2}=200
To find the opposite of 600-100x+4x^{2}, find the opposite of each term.
-4x^{2}+100x-4x^{2}=200
Subtract 600 from 600 to get 0.
-8x^{2}+100x=200
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
\frac{-8x^{2}+100x}{-8}=\frac{200}{-8}
Divide both sides by -8.
x^{2}+\frac{100}{-8}x=\frac{200}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{25}{2}x=\frac{200}{-8}
Reduce the fraction \frac{100}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{25}{2}x=-25
Divide 200 by -8.
x^{2}-\frac{25}{2}x+\left(-\frac{25}{4}\right)^{2}=-25+\left(-\frac{25}{4}\right)^{2}
Divide -\frac{25}{2}, the coefficient of the x term, by 2 to get -\frac{25}{4}. Then add the square of -\frac{25}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{2}x+\frac{625}{16}=-25+\frac{625}{16}
Square -\frac{25}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{2}x+\frac{625}{16}=\frac{225}{16}
Add -25 to \frac{625}{16}.
\left(x-\frac{25}{4}\right)^{2}=\frac{225}{16}
Factor x^{2}-\frac{25}{2}x+\frac{625}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
x-\frac{25}{4}=\frac{15}{4} x-\frac{25}{4}=-\frac{15}{4}
Simplify.
x=10 x=\frac{5}{2}
Add \frac{25}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}