Solve for x
x=\sqrt{3589}\approx 59.908263203
x=-\sqrt{3589}\approx -59.908263203
Graph
Share
Copied to clipboard
900+x^{2}=67^{2}
Calculate 30 to the power of 2 and get 900.
900+x^{2}=4489
Calculate 67 to the power of 2 and get 4489.
x^{2}=4489-900
Subtract 900 from both sides.
x^{2}=3589
Subtract 900 from 4489 to get 3589.
x=\sqrt{3589} x=-\sqrt{3589}
Take the square root of both sides of the equation.
900+x^{2}=67^{2}
Calculate 30 to the power of 2 and get 900.
900+x^{2}=4489
Calculate 67 to the power of 2 and get 4489.
900+x^{2}-4489=0
Subtract 4489 from both sides.
-3589+x^{2}=0
Subtract 4489 from 900 to get -3589.
x^{2}-3589=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-3589\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -3589 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3589\right)}}{2}
Square 0.
x=\frac{0±\sqrt{14356}}{2}
Multiply -4 times -3589.
x=\frac{0±2\sqrt{3589}}{2}
Take the square root of 14356.
x=\sqrt{3589}
Now solve the equation x=\frac{0±2\sqrt{3589}}{2} when ± is plus.
x=-\sqrt{3589}
Now solve the equation x=\frac{0±2\sqrt{3589}}{2} when ± is minus.
x=\sqrt{3589} x=-\sqrt{3589}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}