Solve for θ
\theta =\frac{6007a^{2}}{274}-\frac{75}{137}
Solve for a (complex solution)
a=-\sqrt{\frac{274\theta +150}{6007}}
a=\sqrt{\frac{274\theta +150}{6007}}
Solve for a
a=\frac{\sqrt{\frac{1096\theta +600}{6007}}}{2}
a=-\frac{\sqrt{\frac{1096\theta +600}{6007}}}{2}\text{, }\theta \geq -\frac{75}{137}
Graph
Share
Copied to clipboard
45+27.4\theta -600.7a^{2}=30
Swap sides so that all variable terms are on the left hand side.
27.4\theta -600.7a^{2}=30-45
Subtract 45 from both sides.
27.4\theta -600.7a^{2}=-15
Subtract 45 from 30 to get -15.
27.4\theta =-15+600.7a^{2}
Add 600.7a^{2} to both sides.
27.4\theta =\frac{6007a^{2}}{10}-15
The equation is in standard form.
\frac{27.4\theta }{27.4}=\frac{\frac{6007a^{2}}{10}-15}{27.4}
Divide both sides of the equation by 27.4, which is the same as multiplying both sides by the reciprocal of the fraction.
\theta =\frac{\frac{6007a^{2}}{10}-15}{27.4}
Dividing by 27.4 undoes the multiplication by 27.4.
\theta =\frac{6007a^{2}}{274}-\frac{75}{137}
Divide -15+\frac{6007a^{2}}{10} by 27.4 by multiplying -15+\frac{6007a^{2}}{10} by the reciprocal of 27.4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}