30 = 25 t + \frac { 1 } { 2 } ( - 9,81 ) t ^ { 2 }
Solve for t
t = \frac{20 \sqrt{910} + 2500}{981} \approx 3.163429282
t = \frac{2500 - 20 \sqrt{910}}{981} \approx 1.933410678
Share
Copied to clipboard
30=25t-\frac{981}{200}t^{2}
Multiply \frac{1}{2} and -9,81 to get -\frac{981}{200}.
25t-\frac{981}{200}t^{2}=30
Swap sides so that all variable terms are on the left hand side.
25t-\frac{981}{200}t^{2}-30=0
Subtract 30 from both sides.
-\frac{981}{200}t^{2}+25t-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-25±\sqrt{25^{2}-4\left(-\frac{981}{200}\right)\left(-30\right)}}{2\left(-\frac{981}{200}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{981}{200} for a, 25 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-25±\sqrt{625-4\left(-\frac{981}{200}\right)\left(-30\right)}}{2\left(-\frac{981}{200}\right)}
Square 25.
t=\frac{-25±\sqrt{625+\frac{981}{50}\left(-30\right)}}{2\left(-\frac{981}{200}\right)}
Multiply -4 times -\frac{981}{200}.
t=\frac{-25±\sqrt{625-\frac{2943}{5}}}{2\left(-\frac{981}{200}\right)}
Multiply \frac{981}{50} times -30.
t=\frac{-25±\sqrt{\frac{182}{5}}}{2\left(-\frac{981}{200}\right)}
Add 625 to -\frac{2943}{5}.
t=\frac{-25±\frac{\sqrt{910}}{5}}{2\left(-\frac{981}{200}\right)}
Take the square root of \frac{182}{5}.
t=\frac{-25±\frac{\sqrt{910}}{5}}{-\frac{981}{100}}
Multiply 2 times -\frac{981}{200}.
t=\frac{\frac{\sqrt{910}}{5}-25}{-\frac{981}{100}}
Now solve the equation t=\frac{-25±\frac{\sqrt{910}}{5}}{-\frac{981}{100}} when ± is plus. Add -25 to \frac{\sqrt{910}}{5}.
t=\frac{2500-20\sqrt{910}}{981}
Divide -25+\frac{\sqrt{910}}{5} by -\frac{981}{100} by multiplying -25+\frac{\sqrt{910}}{5} by the reciprocal of -\frac{981}{100}.
t=\frac{-\frac{\sqrt{910}}{5}-25}{-\frac{981}{100}}
Now solve the equation t=\frac{-25±\frac{\sqrt{910}}{5}}{-\frac{981}{100}} when ± is minus. Subtract \frac{\sqrt{910}}{5} from -25.
t=\frac{20\sqrt{910}+2500}{981}
Divide -25-\frac{\sqrt{910}}{5} by -\frac{981}{100} by multiplying -25-\frac{\sqrt{910}}{5} by the reciprocal of -\frac{981}{100}.
t=\frac{2500-20\sqrt{910}}{981} t=\frac{20\sqrt{910}+2500}{981}
The equation is now solved.
30=25t-\frac{981}{200}t^{2}
Multiply \frac{1}{2} and -9,81 to get -\frac{981}{200}.
25t-\frac{981}{200}t^{2}=30
Swap sides so that all variable terms are on the left hand side.
-\frac{981}{200}t^{2}+25t=30
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{981}{200}t^{2}+25t}{-\frac{981}{200}}=\frac{30}{-\frac{981}{200}}
Divide both sides of the equation by -\frac{981}{200}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{25}{-\frac{981}{200}}t=\frac{30}{-\frac{981}{200}}
Dividing by -\frac{981}{200} undoes the multiplication by -\frac{981}{200}.
t^{2}-\frac{5000}{981}t=\frac{30}{-\frac{981}{200}}
Divide 25 by -\frac{981}{200} by multiplying 25 by the reciprocal of -\frac{981}{200}.
t^{2}-\frac{5000}{981}t=-\frac{2000}{327}
Divide 30 by -\frac{981}{200} by multiplying 30 by the reciprocal of -\frac{981}{200}.
t^{2}-\frac{5000}{981}t+\left(-\frac{2500}{981}\right)^{2}=-\frac{2000}{327}+\left(-\frac{2500}{981}\right)^{2}
Divide -\frac{5000}{981}, the coefficient of the x term, by 2 to get -\frac{2500}{981}. Then add the square of -\frac{2500}{981} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{5000}{981}t+\frac{6250000}{962361}=-\frac{2000}{327}+\frac{6250000}{962361}
Square -\frac{2500}{981} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{5000}{981}t+\frac{6250000}{962361}=\frac{364000}{962361}
Add -\frac{2000}{327} to \frac{6250000}{962361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{2500}{981}\right)^{2}=\frac{364000}{962361}
Factor t^{2}-\frac{5000}{981}t+\frac{6250000}{962361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{2500}{981}\right)^{2}}=\sqrt{\frac{364000}{962361}}
Take the square root of both sides of the equation.
t-\frac{2500}{981}=\frac{20\sqrt{910}}{981} t-\frac{2500}{981}=-\frac{20\sqrt{910}}{981}
Simplify.
t=\frac{20\sqrt{910}+2500}{981} t=\frac{2500-20\sqrt{910}}{981}
Add \frac{2500}{981} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}