Factor
\left(6-x\right)\left(3x+5\right)
Evaluate
\left(6-x\right)\left(3x+5\right)
Graph
Share
Copied to clipboard
-3x^{2}+13x+30
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=-3\times 30=-90
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+30. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=18 b=-5
The solution is the pair that gives sum 13.
\left(-3x^{2}+18x\right)+\left(-5x+30\right)
Rewrite -3x^{2}+13x+30 as \left(-3x^{2}+18x\right)+\left(-5x+30\right).
3x\left(-x+6\right)+5\left(-x+6\right)
Factor out 3x in the first and 5 in the second group.
\left(-x+6\right)\left(3x+5\right)
Factor out common term -x+6 by using distributive property.
-3x^{2}+13x+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-3\right)\times 30}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\left(-3\right)\times 30}}{2\left(-3\right)}
Square 13.
x=\frac{-13±\sqrt{169+12\times 30}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-13±\sqrt{169+360}}{2\left(-3\right)}
Multiply 12 times 30.
x=\frac{-13±\sqrt{529}}{2\left(-3\right)}
Add 169 to 360.
x=\frac{-13±23}{2\left(-3\right)}
Take the square root of 529.
x=\frac{-13±23}{-6}
Multiply 2 times -3.
x=\frac{10}{-6}
Now solve the equation x=\frac{-13±23}{-6} when ± is plus. Add -13 to 23.
x=-\frac{5}{3}
Reduce the fraction \frac{10}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{36}{-6}
Now solve the equation x=\frac{-13±23}{-6} when ± is minus. Subtract 23 from -13.
x=6
Divide -36 by -6.
-3x^{2}+13x+30=-3\left(x-\left(-\frac{5}{3}\right)\right)\left(x-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{3} for x_{1} and 6 for x_{2}.
-3x^{2}+13x+30=-3\left(x+\frac{5}{3}\right)\left(x-6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-3x^{2}+13x+30=-3\times \frac{-3x-5}{-3}\left(x-6\right)
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}+13x+30=\left(-3x-5\right)\left(x-6\right)
Cancel out 3, the greatest common factor in -3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}