Solve for x
x=\frac{\sqrt{1541}}{40}-0.125\approx 0.856389321
x=-\frac{\sqrt{1541}}{40}-0.125\approx -1.106389321
Graph
Share
Copied to clipboard
3.85=4x^{2}+x+0.06
Use the distributive property to multiply 2x+0.2 by 2x+0.3 and combine like terms.
4x^{2}+x+0.06=3.85
Swap sides so that all variable terms are on the left hand side.
4x^{2}+x+0.06-3.85=0
Subtract 3.85 from both sides.
4x^{2}+x-3.79=0
Subtract 3.85 from 0.06 to get -3.79.
x=\frac{-1±\sqrt{1^{2}-4\times 4\left(-3.79\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 1 for b, and -3.79 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 4\left(-3.79\right)}}{2\times 4}
Square 1.
x=\frac{-1±\sqrt{1-16\left(-3.79\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-1±\sqrt{1+60.64}}{2\times 4}
Multiply -16 times -3.79.
x=\frac{-1±\sqrt{61.64}}{2\times 4}
Add 1 to 60.64.
x=\frac{-1±\frac{\sqrt{1541}}{5}}{2\times 4}
Take the square root of 61.64.
x=\frac{-1±\frac{\sqrt{1541}}{5}}{8}
Multiply 2 times 4.
x=\frac{\frac{\sqrt{1541}}{5}-1}{8}
Now solve the equation x=\frac{-1±\frac{\sqrt{1541}}{5}}{8} when ± is plus. Add -1 to \frac{\sqrt{1541}}{5}.
x=\frac{\sqrt{1541}}{40}-\frac{1}{8}
Divide -1+\frac{\sqrt{1541}}{5} by 8.
x=\frac{-\frac{\sqrt{1541}}{5}-1}{8}
Now solve the equation x=\frac{-1±\frac{\sqrt{1541}}{5}}{8} when ± is minus. Subtract \frac{\sqrt{1541}}{5} from -1.
x=-\frac{\sqrt{1541}}{40}-\frac{1}{8}
Divide -1-\frac{\sqrt{1541}}{5} by 8.
x=\frac{\sqrt{1541}}{40}-\frac{1}{8} x=-\frac{\sqrt{1541}}{40}-\frac{1}{8}
The equation is now solved.
3.85=4x^{2}+x+0.06
Use the distributive property to multiply 2x+0.2 by 2x+0.3 and combine like terms.
4x^{2}+x+0.06=3.85
Swap sides so that all variable terms are on the left hand side.
4x^{2}+x=3.85-0.06
Subtract 0.06 from both sides.
4x^{2}+x=3.79
Subtract 0.06 from 3.85 to get 3.79.
\frac{4x^{2}+x}{4}=\frac{3.79}{4}
Divide both sides by 4.
x^{2}+\frac{1}{4}x=\frac{3.79}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{4}x=0.9475
Divide 3.79 by 4.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=0.9475+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=0.9475+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1541}{1600}
Add 0.9475 to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{1541}{1600}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1541}{1600}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{1541}}{40} x+\frac{1}{8}=-\frac{\sqrt{1541}}{40}
Simplify.
x=\frac{\sqrt{1541}}{40}-\frac{1}{8} x=-\frac{\sqrt{1541}}{40}-\frac{1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}