Solve for k
k=1.5-\frac{1}{6u}
u\neq 0
Solve for u
u=-\frac{15}{4\left(\frac{45k}{2}-33.75\right)}
k\neq \frac{3}{2}
Share
Copied to clipboard
3.75=u\left(1.5-k\right)\times 10\times 2.25
Calculate 1.5 to the power of 2 and get 2.25.
3.75=u\left(1.5-k\right)\times 22.5
Multiply 10 and 2.25 to get 22.5.
3.75=\left(1.5u-uk\right)\times 22.5
Use the distributive property to multiply u by 1.5-k.
3.75=33.75u-22.5uk
Use the distributive property to multiply 1.5u-uk by 22.5.
33.75u-22.5uk=3.75
Swap sides so that all variable terms are on the left hand side.
-22.5uk=3.75-33.75u
Subtract 33.75u from both sides.
\left(-\frac{45u}{2}\right)k=\frac{15-135u}{4}
The equation is in standard form.
\frac{\left(-\frac{45u}{2}\right)k}{-\frac{45u}{2}}=\frac{15-135u}{4\left(-\frac{45u}{2}\right)}
Divide both sides by -22.5u.
k=\frac{15-135u}{4\left(-\frac{45u}{2}\right)}
Dividing by -22.5u undoes the multiplication by -22.5u.
k=\frac{3}{2}-\frac{1}{6u}
Divide \frac{15-135u}{4} by -22.5u.
3.75=u\left(1.5-k\right)\times 10\times 2.25
Calculate 1.5 to the power of 2 and get 2.25.
3.75=u\left(1.5-k\right)\times 22.5
Multiply 10 and 2.25 to get 22.5.
3.75=\left(1.5u-uk\right)\times 22.5
Use the distributive property to multiply u by 1.5-k.
3.75=33.75u-22.5uk
Use the distributive property to multiply 1.5u-uk by 22.5.
33.75u-22.5uk=3.75
Swap sides so that all variable terms are on the left hand side.
\left(33.75-22.5k\right)u=3.75
Combine all terms containing u.
\left(-\frac{45k}{2}+33.75\right)u=3.75
The equation is in standard form.
\frac{\left(-\frac{45k}{2}+33.75\right)u}{-\frac{45k}{2}+33.75}=\frac{3.75}{-\frac{45k}{2}+33.75}
Divide both sides by 33.75-22.5k.
u=\frac{3.75}{-\frac{45k}{2}+33.75}
Dividing by 33.75-22.5k undoes the multiplication by 33.75-22.5k.
u=\frac{15}{4\left(-\frac{45k}{2}+33.75\right)}
Divide 3.75 by 33.75-22.5k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}