Solve for x
x=\frac{17}{36}\approx 0.472222222
Graph
Share
Copied to clipboard
-63x-0.2\times 7.5+36x=\frac{5}{4}-62\times \frac{1}{4}
Multiply 3.6 and -17.5 to get -63.
-63x-1.5+36x=\frac{5}{4}-62\times \frac{1}{4}
Multiply 0.2 and 7.5 to get 1.5.
-27x-1.5=\frac{5}{4}-62\times \frac{1}{4}
Combine -63x and 36x to get -27x.
-27x-1.5=\frac{5}{4}-\frac{62}{4}
Multiply 62 and \frac{1}{4} to get \frac{62}{4}.
-27x-1.5=\frac{5}{4}-\frac{31}{2}
Reduce the fraction \frac{62}{4} to lowest terms by extracting and canceling out 2.
-27x-1.5=\frac{5}{4}-\frac{62}{4}
Least common multiple of 4 and 2 is 4. Convert \frac{5}{4} and \frac{31}{2} to fractions with denominator 4.
-27x-1.5=\frac{5-62}{4}
Since \frac{5}{4} and \frac{62}{4} have the same denominator, subtract them by subtracting their numerators.
-27x-1.5=-\frac{57}{4}
Subtract 62 from 5 to get -57.
-27x=-\frac{57}{4}+1.5
Add 1.5 to both sides.
-27x=-\frac{57}{4}+\frac{3}{2}
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
-27x=-\frac{57}{4}+\frac{6}{4}
Least common multiple of 4 and 2 is 4. Convert -\frac{57}{4} and \frac{3}{2} to fractions with denominator 4.
-27x=\frac{-57+6}{4}
Since -\frac{57}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
-27x=-\frac{51}{4}
Add -57 and 6 to get -51.
x=\frac{-\frac{51}{4}}{-27}
Divide both sides by -27.
x=\frac{-51}{4\left(-27\right)}
Express \frac{-\frac{51}{4}}{-27} as a single fraction.
x=\frac{-51}{-108}
Multiply 4 and -27 to get -108.
x=\frac{17}{36}
Reduce the fraction \frac{-51}{-108} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}