Solve for r_2
r_{2}=9
Share
Copied to clipboard
3.6\left(r_{2}+6\right)=6r_{2}
Variable r_{2} cannot be equal to -6 since division by zero is not defined. Multiply both sides of the equation by r_{2}+6.
3.6r_{2}+21.6=6r_{2}
Use the distributive property to multiply 3.6 by r_{2}+6.
3.6r_{2}+21.6-6r_{2}=0
Subtract 6r_{2} from both sides.
-2.4r_{2}+21.6=0
Combine 3.6r_{2} and -6r_{2} to get -2.4r_{2}.
-2.4r_{2}=-21.6
Subtract 21.6 from both sides. Anything subtracted from zero gives its negation.
r_{2}=\frac{-21.6}{-2.4}
Divide both sides by -2.4.
r_{2}=\frac{-216}{-24}
Expand \frac{-21.6}{-2.4} by multiplying both numerator and the denominator by 10.
r_{2}=9
Divide -216 by -24 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}